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1. For an increasing sequence of measurable sets {En}, if there exists n0 s.t. m(En0
) =∞, then by monotonicity

of measure, the equality holds. If m(En) <∞ for all n ∈ N, define A1 = E1, An = En \ En−1 for n ≥ 2. By
monotonicity of En, {An} are mutually disjoint and ∪∞n=1An = ∪∞n=1En. By countable additivity of m,

m(∪∞n=1En) =m(∪∞n=1An)

= m(E1) +

∞∑
n=2

[m(En)−m(En−1)]

= lim
n→∞

[m(En)−m(E1)] +m(E1),

result follows.

For a decreasing sequence of measurable sets {En} with m(E1) < ∞, Let Dn = E1 \ En, hence {Dn} is an
increasing sequence of measurable sets. It follows from above that

m(∪∞n=1Dn) = lim
n→∞

m(Dn).

Hence, note that ∪∞n=1Dn = E1 \ ∩∞n=1En and m(Dn) = m(E1)−m(En), we have

m(E1 \ ∩∞n=1En) = lim
n→∞

[m(E1)−m(En)].

By measurability of ∩∞n=1En and m(E1) <∞, result follows.

2. Let c ∈ R,
{x ∈ E|max{f1, f2}(x) > c} = {x ∈ E|f1(x) > c} ∪ {x ∈ E|f2(x) > c} ∈ M. Hence, max{f1, f2} ∈ MF .
In particular, for a sequence of measurable functions {hn}, define g = supn hn, we have, by M being a
σ-algebra,

{x ∈ E|g(x) > c} = ∪∞n=1{x ∈ E|hn(x) > c} ∈ M.

i.e. g ∈ MF . Similarly, we have inf hn ∈ MF . Now, define hk = supn≥k fn ∈ MF . Hence, f = limn fn =
lim sup fn = infk hk ∈MF .

3. For all n ∈ N, define En = {x ∈ E : |g(x)| ≥ n}. Note that, for all n,

m({x ∈ E : |g| =∞}) = m(∩kEk) ≤ m(En).

Since g ∈ L1(E),

∞ >

∫
E

|g| ≥
∫
En

|g| ≥ nm(En).

Result follows.
Now, we have f and g are finite a.e. Except on a null set N , g− f is well defined, we can assign any value for
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g−f on N . Note that |g−f | ≤ |f |+|g| a.e., by monotonicity and linearity of Lebesgue integral, g−f ∈ L1(E).
By linearity,

∫
E
(g − f) =

∫
E
g −

∫
E
f = 0. g − f ≥ 0 a.e., let n ∈ N, let Kn = {x ∈ E|g − f ≥ 1

n},

0 =

∫
E

(g − f) ≥ 1

n
m(Kn) ≥ 0

. i.e. m(Kn) = 0 for all n, hence,

m({x ∈ E : g − f > 0}) = m(∪nKn) ≤
∑
n

m(Kn) = 0.

4. (i) Since f ≥ 0, λ(E) ≥ 0 for all E ∈ M. Since m(φ) = 0, we have λ(φ) = 0. It remains to check countable
additivity. Let {En}, mutually disjoint, be a sequence in (M). Note that for eachN ∈ N, aN := fχ∪N

n=1En
≥ 0.

This sequence is monotone increasing in N , converges a.e. to fχ∪∞
n=1En

≥ 0 as N →∞. Hence, we can apply
monotone convergence theorem,

∞∑
n=1

λ(En) = lim
N

N∑
n

λ(En) = lim
N

∫
R
fχ∪N

n=1En
=

∫
R
fχ∪∞

n=1En
=

∫
∪∞

n=1En

f = λ(∪∞n=1En)

(ii) For each n ∈ N, define hn : R → R by hn = min{f, n}. Check that, hn ≥ 0, monotonically increasing in
n, converges a.e. to f as n→∞. By Monotone Convergence Theorem, we have

lim
n

∫
R
hn =

∫
R
f <∞.

Hence, let ε > 0, there exists N s.t. ∫
R
f −

∫
R
hN < ε.

Let 0 < δ < ε
2N , if A ∈M with m(A) < δ, by linearity and monotonicity,

λ(A) =

∫
A

f =

∫
A

f −
∫
A

hN +

∫
A

hN ≤
∫
R
(f − hN ) + ε/2 < ε.

5. A := {x ∈ E|α > D−f(x) = supδ>0 inf0<x−y<δ,y∈[a,b]
f(y)− f(x)

y − x
}. This is well defined since E ⊂ (a, b).

By definition of sup and inf, let x ∈ A, let δ > 0, there exists dδ,x ∈ (0, δ) small enough such that
f(x− dδ,x)− f(x)

−dδ,x
< α and (x− δx, x] ⊂ G. Then, let C = {(x− δx, x]), δ > 0, z ∈ A}. Result follows.
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